Verifiable Secret Redistribution (CMU-CS-01-155)

نویسندگان

  • Theodore M. Wong
  • Jeannette M. Wing
چکیده

We present a new protocol to perform non-interactive verifiable secret redistribution (VSR) for secrets distributed with Shamir’s secret sharing scheme. We base our VSR protocol on Desmedt and Jajodia’s redistribution protocol for linear secret sharing schemes, which we specialize for Shamir’s scheme. We extend their redistribution protocol with Feldman’s non-interactive verifiable secret sharing scheme to ensure that a SUBSHARES-VALID condition is true after redistribution. We show that the SUBSHARES-VALID condition is necessary but not sufficient to guarantee that the new shareholders have valid shares, and present an additional SHARES-VALID condition. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA), Advanced Technology Office, under the title “Organically Assured and Survivable Information Systems (OASIS)” (Air Force Cooperative Agreement no. F30602-002-0523). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of DARPA or the U.S. Government.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Publicly Verifiable Secret Sharing Scheme using Non-homogeneous Linear Recursions

A non-interactive (t,n)-publicly veriable secret sharing scheme (non-interactive (t,n)-PVSS scheme) is a (t,n)-secret sharing scheme in which anyone, not only the participants of the scheme, can verify the correctness of the produced shares without interacting with the dealer and participants. The (t,n)-PVSS schemes have found a lot of applications in cryptography because they are suitable for<...

متن کامل

Submitted in Partial Fulfillment of the Requirements for the Degree Of

Verifiable secret sharing is a cryptographic primitive used in many distributed applications. To engineer realistic applications, it is beneficial to have dynamically changing shares and shareholder groups. Proactive secret sharing schemes deal with dynamically changing shares. Secret redistribution schemes solve issues of both dynamically changing shares and shareholder groups. In this dissert...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

Verifiable Secret Redistribution

We present a new protocol to perform non-interactive verifiable secret redistribution (VSR) for secrets distributed with Shamir’s secret sharing scheme. We base our VSR protocol on Desmedt and Jajodia’s redistribution protocol for linear secret sharing schemes, which we specialize for Shamir’s scheme. We extend their redistribution protocol with Feldman’s non-interactive verifiable secret shari...

متن کامل

Verifiable Secret Redistribution for Threshold Sharing Schemes

We present a new protocol for the verifiable redistribution of secrets from (m,n) to (m,n) access structures for threshold sharing schemes. Our protocol enables the addition or removal of shareholders and also guards against mobile adversaries that cause permanent damage. We observe that existing protocols either cannot be readily extended to allow redistribution between different access struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015